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ABSTRACT
Background Nephropathologic analyses provide important outcomes-related data in experiments with the
animal models that are essential for understanding kidney disease pathophysiology. Precision medicine in-
creases thedemand forquantitative, unbiased, reproducible, andefficient histopathologicanalyses,whichwill
require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increas-
ingly applied in pathology because of its high performance in tasks like histology segmentation.

MethodsWe investigated use of a convolutional neural network architecture for accurate segmentation of
periodic acid–Schiff-stained kidney tissue from healthy mice and five murine disease models and from other
species used in preclinical research. We trained the convolutional neural network to segment six major renal
structures: glomerular tuft, glomerulus including Bowman’s capsule, tubules, arteries, arterial lumina, and
veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total.

ResultsMulticlass segmentation performancewas very high in all diseasemodels. The convolutional neural
network allowed high-throughput and large-scale, quantitative and comparative analyses of various mod-
els. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation
and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current
standardmorphometric analysis. The convolutional neural network also showed high performance in other
species used in research—including rats, pigs, bears, and marmosets—as well as in humans, providing a
translational bridge between preclinical and clinical studies.

Conclusions We developed a deep learning algorithm for accurate multiclass segmentation of digital
whole-slide images of periodic acid–Schiff-stained kidneys from various species and renal disease models.
This enables reproducible quantitative histopathologic analyses in preclinical models that also might be
applicable to clinical studies.

JASN 32: 52–68, 2021. doi: https://doi.org/10.1681/ASN.2020050597

Many basic science and preclinical studies require
experiments in animals with histopathologic as-
sessment representing a major readout. The de-
mands on robust but at the same time objective,
precise, and quantitative data steadily increase. In
both clinical practice and research, histopathologic
evaluations are often performed manually. This is
both time-consuming and not seldom poorly repro-
ducible, particularly if not performed by experts.
The projected decrease in pathologist workforce,

Received May 6, 2020. Accepted September 9, 2020.

N.B., B.M.K., R.D.B., P. Boor, and D.M. contributed equally to
this work.

Published online ahead of print. Publication date available at
www.jasn.org.

Correspondence: Prof. Peter Boor, Institute of Pathology, RWTH
Aachen University Hospital, Pauwelsstrasse 30, Aachen 52074,
Germany. Email: pboor@ukaachen.de

Copyright © 2021 by the American Society of Nephrology

52 ISSN : 1046-6673/3201-52 JASN 32: 52–68, 2021

https://orcid.org/0000-0002-8430-0363
https://orcid.org/0000-0002-1566-7129
https://orcid.org/0000-0002-8527-7353
https://orcid.org/0000-0001-9809-695X
https://orcid.org/0000-0002-3520-5394
https://orcid.org/0000-0003-4048-6351
https://orcid.org/0000-0001-9921-4284
https://doi.org/10.1681/ASN.2020050597
http://www.jasn.org
mailto:pboor@ukaachen.de


which is particularly noticeable in highly specialized fields like
nephropathology, and heavy engagement in clinical duties fur-
ther complicate the situation.1

High-throughput digitization of histologic slides, generat-
ing so-called whole-slide images (WSIs), enables the effective
use of computer-assisted histopathologic analysis. Deep learn-
ing (DL) is a subset of artificial intelligence that applies com-
puter algorithms to find meaningful representations of raw
data through multiple layers of abstraction.2 DL’s most pop-
ular technique, the convolutional neural network (CNN), is
increasingly applied in pathology3 due to its high performance
in tasks like detection of nuclei,4 histology segmentation,5 or
prediction of molecular alterations from hematoxylin-and-
eosin–stained sections.6 We have previously shown that ML-
and DL-based techniques can facilitate glomerulus detection
and segmentation in WSIs.7–10 Recently, two other groups
reported the feasibility of the DL-based segmentation of hu-
man kidney WSIs,11,12 and glomerulus segmentation was
already successfully used for subsequent analysis of glomeru-
losclerosis in periodic acid–Schiff (PAS)–13,14 or trichrome-
stained biopsy specimens.15 The usefulness of DL in animal
models with broad histopathologic injury patterns was not yet
analyzed.

Our main aim was to develop a CNN for multiclass seg-
mentation of mouse kidney PAS-stained histology, focusing
on five commonly used models of kidney diseases. We dem-
onstrate the applicability of our CNN for large-scale
histopathologic segmentation followed by quantitative data
extraction and confirm the performance by correlation with
traditional image analysis tools. We also show the applicability
for other species used in research, and for patient kidney
samples.

METHODS

Histology Samples
We used paraffin-embedded kidney tissue fixed in formalin or
methyl Carnoy’s solution. Sections of 1–2-mm thickness were
stained with PAS and counterstained with hematoxylin. Slides
were digitalized using the whole-slide scanners NanoZoomer
HT2 with 320 objective (Hamamatsu Photonics, Hama-
matsu, Japan) or Aperio AT2with320 or340 objective (Leica
Biosystems, Wetzlar, Germany).

All samples from mice, rats, and pigs came from already
published studies and were retrospectively analyzed.16–21 All
animal experiments were approved by the local government
authorities: mouse, rats, pigs: Landesamt für Umwelt und Ver-
braucherschutz Nordrhein Westfalen; marmosets: institu-
tional animal welfare committee and subsequently by the
Lower Saxony State Office for Consumer Protection and
Food Safety (LAVES) (reference number 33.19‐42502‐04‐17/
2496); and bears: bear samples were obtained by hunters dur-
ing the hunting seasons in Maine. Hunters were asked to par-
ticipate on a voluntary basis and no bears were killed for the

specific purpose of this study. All methods were carried out in
accordance with relevant guidelines and regulations.

Mouse Models
We reanalyzed healthy male 10–12-week-old C57BL/6N mice
(n541) and five widely usedmurinemodels of kidney diseases
with different causes, i.e., unilateral ureteral obstruction
(UUO, n515),16,17 adenine-induced nephropathy (adenine,
n515),18 Col4a3 knock out (Alport, n515),16 unilateral
ischemia-reperfusion injury (IRI, n515),16,17 and nephro-
toxic serum nephritis (NTN, n515),19 and an additional sixth
model used only for testing, the diabetic/metabolic nephrop-
athy (db/db, n53).20 The surgical UUO and IRI models were
conducted in male 10–12-week-old C57BL/6N mice as pre-
viously described.16,17 An additional UUO day 10 cohort of
three male C57BL/6J mice was contributed by R. Kramann
and S. Menzel and used as an external control cohort. For
the adenine model, male 10–12-week-old mice on C57BL/
6N background were fed with 0.2% adenine-enriched diet as
previously described.22 For the NTN model, kidneys from
male 12–14-week-old 12931/SvJ mice were harvested
10 days after intravenous injection of a sheep-anti-mouse glo-
merulus antiserum.19 Col4a3 knockout mice were bred on a
12931/SvJ genetic background and euthanized at 8 weeks of
age. The db/db mice (BKS.Cg-Dock7m1/1Leprdb/J) were fed
a high-fat Western diet for 9 weeks and a normal diet for
another 5 weeks before euthanasia.20

In the UUO (sham, day 5, day 10 samples), IRI (sham, day
14, day 21 samples), and adenine (day 1, day 14, day 21 sam-
ples)models, additional immunostainings and quantifications
were performed as previously described17,22 for comparison
with network-based automated segmentation results from
PAS stainings. In short, sections were deparaffinized and en-
dogenous peroxidase was blocked with 3% H2O2. Slides were
incubated with a primary antibody against a-SMA (a-smooth
muscle actin, Dako/Agilent, M085101–2; Santa Clara, CA),
followed by colorimetric detection using DAB and nuclear
counterstain with methyl green. The stainings were digitalized
and further processed using the viewing software NDP.view

Significance Statement

Nephropathologic analyses provide important outcomes-related data
in the animal model studies that are essential to understanding kidney
disease pathophysiology. In this work, the authors used a deep learning
technique, the convolutional neural network, as a multiclass histology
segmentation tool to evaluate kidney disease in animal models. This
enabled a rapid, automated, high-performance segmentation of digital
whole-slide images of periodic acid–Schiff–stained kidney tissues, al-
lowing high-throughput quantitative and comparative analyses in mul-
tiplemurinediseasemodels andother species. Theconvolutional neural
network also performedwell in evaluating patient samples, providing a
translational bridge between preclinical and clinical research. Extracted
quantitative morphologic features closely correlated with standard
morphometric measurements. Deep learning–based segmentation in
experimental renal pathology is a promising step toward reproducible,
unbiased, and high-throughput quantitative digital nephropathology.

JASN 32: 52–68, 2021 Deep Learning in Experimental Nephropathology 53

www.jasn.org BASIC RESEARCH



(Hamamatsu Photonics, Hamamatsu, Japan). The percentage
of positively stained areawas analyzed inwhole cortices at320
magnification using ImageJ software by measuring DAB-
positive pixels in 8-Bit images (National Institutes of Health,
Bethesda, MD) as previously described.16,18 All analyses were
performed in a blinded manner.

Patient Samples
Sixteen PAS-stained sections from formalin-fixed and
paraffin-embedded human kidney specimens (nine tumor
nephrectomies and seven biopsy specimens [two minimal
change disease, one pauci-immune GN, four acute tubular
injury]) were anonymously obtained from the archive of the
Institute for Pathology of the RWTH Aachen University. In
the case of tumor nephrectomies, healthy tissue far away
from the tumors was used. Patient characteristics were:
M/F57:9; age563.13611.86 years. The study was approved
by the local ethical committee of the RWTH University
(No. EK315/19).

Further Species
For an extended analysis across different species, we used
healthy kidney tissue from rats, pigs, common marmosets,
and black bears. We used renal tissue from male Wistar rats
(n58) and German landrace pigs (n56). Renal tissue from
male (n52) and female (n56) common marmosets was pro-
vided by the German Primate Center, Goettingen. Kidney
tissue from black bears (n58) was provided by the Jackson
Laboratory and collected by local huntsmen frommale animals
at different ages all across Maine, US. Hunters were provided
with detailed collection directions and provided datasheets vol-
untarily about deviations to requested timing in sample collec-
tion and fixation and metadata about the bears.

Dataset and Ground Truth
All technical terms used in the following sections are de-
scribed in a glossary in Supplemental Table 1. The WSIs
(n5168 in total) were split into training, validation, and
test sets as follows: the 41 healthy mouse WSIs—30 training,
three validation, eight test; the 15 WSIs from each mouse
model—11 training, one validation, three test; the three
db/db and three external UUO were only used for the test;
the six pigWSIs—five training, one test; the eight marmoset,
bear and rat WSIs—each split to five training, three test;
and the 16 human WSIs—ten training, six test slides: two
test WSIs for performance quantifications and all four slides
of acute tubular injury to visually show transferability to
human disease.

Ground truth annotations were generated for patches of
size 1743174 mm2 (resampled into 5163516-pixel integer
label images) by eight qualified annotators as outlined in the
section “Data Quality and Quantity” using QuPath.23 All an-
notations were corrected by a nephropathologist and re-
searcher with long experience in nephrologic basic research.
Six predefined classes (i.e., renal structures) were annotated:

(1) full glomerulus, (2) glomerular tuft, (3) tubule, (4) artery,
(5) arterial lumen, and (6) vein including renal pelvis and large
nontissue areas. Classes and annotation procedure are defined
in detail in Supplemental Figure 1, A–G and Supplemental
Table 2. The remaining tissue comprising capillaries, adventi-
tia of arteries, interstitial cells and matrix, and urotheliumwas
defined as the “interstitium.” For annotations, we mostly se-
lected 20 random patches per slide. An overview of our anno-
tations is provided in Supplemental Table 3. In total, we
performed 2930 annotated patches and 72,722 annotated
structures and split the annotated patches into 2100 training
(600 murine healthy, 220 each murine model, 200 human, 50
each remaining species), 160 validation (60murine healthy, 20
each murine model), and 670 test patches (160 murine
healthy, 60 each murine model, 30 murine db/db, 30 external
murine UUO, 30 each remaining species including human)
for the development of our CNN (Figure 1, Supplemental
Table 4).

Data Quality and Quantity
The most crucial prerequisite for high performance of a DL
system is the optimization of data quality and quantity. We
performed the following optimization techniques: (1) the ex-
pert annotators were instructed and coached to precisely com-
ply with the developed structure definitions (Supplemental
Figure 1, Supplemental Table 2) to reduce interannotator var-
iability, thus yielding consistent annotations. (2) After manual
annotation of about 20% of all annotations, we used these to
train an initial segmentation network. We then used its pre-
dictions as preannotations facilitating the annotation effort
for the annotators. These predictions were loaded into Qu-
Path, converting the manual annotation task into a prediction
correction task, reducing the annotation effort (Supplemental
Figure 1H). (3) We applied the concept of active learning24 to
optimize the selection of image patches for annotation. We
used the initial segmentation network to compute whole-slide
segmentation results and visually selected patches with the
highest prediction errors most often showing complex or
rare structures. We have repeated steps (2) and (3) when
about 60% of all annotations have been performed. This con-
cept yields an extremely high degree of sample efficiency to
ensure that the network will learn and improve in an
optimal way.

CNN Development
CNN Model
Our employed DL model was on the basis of the U-Net archi-
tecture25 (for details see Supplemental Table 4). The U-Net
was initially developed for biomedical image segmentation
and represents one of the most popular and powerful segmen-
tation techniques nowadays.We applied the following changes
to the original architecture: (1) we increased its depth by one to
increase its receptive field, (2) we then used half channel num-
bers on each architectural level to reduce the risk of overfitting,
(3) we did not halve feature channel numbers when upsampling
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via transposed convolutions to effectively increase its capacity,
and (4) we empirically applied instance normalization and leaky
ReLU activation due to its empirically shown superiority over
batch normalization and ReLU activation,26 overall resulting in
about 37 million learnable parameters in our CNN. As network
inputs, we extracted bigger image slide patches of
2163216 mm2, resampled into 6403640-pixel RGB images,
around the annotated patches of 1743174 mm2, to improve
prediction accuracy close at borders due to the resulting context
awareness.27

Border Class
To ensure the separation of different, touching instances of the
same class, we introduced a new border class following28 by
performing dilation on all tubules using a ball-shaped struc-
turing element of radius three pixels. Considering arteries and
glomeruli, only the overlap between their dilated versions,
employing a radius of seven pixels, was also assigned to the
border class. This way, the network was able to maintain a
continuous label transition prediction from afferent and ef-
ferent arteriole to the glomerulus, thereby greatly improving
the prediction accuracy of small afferent and efferent arteri-
oles. The border class mainly represented the tubular base-
ment membranes.

Training Routines
We trained our CNNusing the optimizer RAdam29 on random
mini-batches of size six and applied weight decay with a factor
of 1E25 for regularization. We further scheduled the learning
rate in a reduce-on-plateau fashion to reduce overfitting as
follows: it was initially set to 0.001 and was divided by 3
when the validation loss had not fallen for 15 epochs. When
the learning rate fell below 4E26, training terminated and the
network configuration providing the lowest validation error
was chosen as the final model. Also, our data augmentation
pipeline consisted of spatial (i.e., affine, piecewise affine, elas-
tic, flipping, 90-degree rotation) and color transformations
(i.e., hue and saturation shifting, gamma contrast, normaliza-
tion) to improve the CNN’s generalizability by simulating
variance in tissue morphology and staining. The weighted
categoric crossentropy and the Dice-loss30 were applied as
equally weighted loss functions measuring the dissimilarity
between prediction and ground truth for network optimiza-
tion. Using weighted categoric crossentropy, we gave the
border class a ten-times-greater weight than other classes
to strongly enforce the separation of different instances
from the same class. Overall, three-channel inputs (RGB)
of spatial resolution 6403640 pixels were being forwarded
through the network producing eight class probability maps,
i.e., full glomerulus, glomerular tuft, tubule, vein including
nontissue background and renal pelvis, artery, arterial lu-
men, tubular border, and remaining tissue representing our
interstitium class, of spatial size 5163516 pixels. For each
pixel, the class with the highest probability was assigned as
the predicted label. To account for reproducibility, our code

is publicly available (at https://github.com/NBouteldja/
KidneySegmentation_Histology).

Postprocessing
In contrast to network ensembling, we applied the regulariza-
tion technique test-time augmentation to improve the CNN’s
robustness at low cost. During inference, test-time augmen-
tation forward flipped versions of the input and averages their
respectively back-flipped predictions to reduce prediction var-
iance by considering multiple estimations. We also performed
the following postprocessing techniques to all classes except
the interstitium: (1) we removed too-small instance predic-
tions and assigned them to the remaining interstitium class,
except for respective glomerular tuft and arterial lumen pre-
dictions that were assigned to their superior classes glomeru-
lus and artery; (2) we performed hole filling; and (3) we
performed dilated tubular instance predictions due to their
thicker border predictions.

Evaluation
Quantitative Evaluation
Wequantitatively evaluated network performance using instance-
level Dice scores, i.e., in all image/ground truth pairs, we com-
puted regularDice scores between each ground truth instance and
its maximally overlapping prediction (0 for false negatives), and
vice versa for each prediction instance to also account for false
positives. These Dice scores were averaged over all instances in all
images, resulting in the instance-level Dice score. This metric
accurately denoted the mean detected area coverage per instance.
We also employed the commonly used average precision (AP) as a
detection metric. After counting and summing all true positives
(TPs), false positives (FPs), and false negatives (FN) across all
images, the AP was calculated as follows:

AP5
TP

TP1 FP1 FN

A prediction was considered a TP when it overlapped with
at least 50% of a ground-truth instance. Both metrics range
from 0 (maximal discordance: no overlap/TP) to 1 (maximal
agreement: perfect overlap/detections).

Performance versus Amount of Training Data
A key unresolved issue regarding DL systems is the specifica-
tion of the minimum amount of training data necessary to
reach satisfactory performances for a given task. Therefore, we
performed an ablation study on performance differences when
training on different training set sizes. In total, we trained an-
other 13 CNNs from scratch using the following training sets:
From all 2100 training patches (representing our full CNN), we
removed human patches or other species patches, or used mu-
rine patches only and in a stepwise manner removed randomly
9.1% of the patches (i.e., using only 90.9%, 81% . . . 9.1% of the
murine patches, but always including patches from healthy and
eachmodel). The validation and test sets as employed for our full
CNN always remained the same.
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Full CNN versus Specialized Single Models
We examined the effect on network performance when jointly
training on data from different domains, i.e., different species
and murine disease models. We compared our full CNN
trained on all training data (including murine models and
species) with six networks, each solely trained and tested on
a particular single murine model, i.e., healthy, UUO, adenine,
Alport, IRI, NTN, to analyze (1) whether the network benefits
from shared multidomain information by potentially learning
more specialized class features, (2) whether the network can
learn the same domain-specific features maintaining equal
segmentation performance, or (3) whether the heterogeneity
of multidomain information might perturb the network, re-
sulting in lower prediction accuracies.

State-of-the-Art Model Comparison
We compared our model with its unmodified variant, the
vanilla U-Net,27 to explore whether our technical modifica-
tions to the standard network architecture had an effect on
performance. We also compared our network with the
context-encoder network,31 another novel state-of-the-art
segmentation network particularly suitable for the segmen-
tation of structures with different sizes that was shown to
outperform the vanilla U-Net. For all comparisons, the same
training and test sets were used.

Comparative Feature Extraction
On the basis of the CNN segmentation results, we extracted
the following histologic features from cortical areas: (1) rel-
ative proportions of tissue area covered by each class, (2)
single class instance sizes (including sizes of Bowman’s space
by subtracting the glomerular tuft area from each full glo-
merulus), and (3) tubular diameters. We included all in-
stances independent of the plane on which they were cut.
We used data from four individual mice at each of the fol-
lowing model time points: UUO day 10, adenine day 14,
Alport mice at 8 weeks of age, IRI day 14, NTN day 10,
and randomly chosen healthy mice. In eachWSI, we extract-
ed ten cortical patches of size 7003700 mm2 for feature
computation. We defined the maximum tubular diameter
as the diameter of the largest circle fully fitting inside the
tubules, a feature that can represent both tubular dilation
and atrophy. Tubular diameter computation was performed
by employing the distance transform function and extracting
its maximum value. For class instance size and tubular di-
ameter computation, only instances fully inside our selected
patches were considered.

Correlation with Immunohistochemical Analysis
Next to qualitative and quantitative performance evaluation,
we correlated our results with standard morphometric analy-
ses, to assess the capabilities of facilitating relevant histopath-
ologic applications.We employed data from the three different
murine models UUO, adenine, and IRI. We extracted five cor-
tical patches of size 7003700 mm2 in each WSI and correlated

the remaining interstitial area coverage predicted by our au-
tomated approach with results from a computer-assisted
morphometric analysis of immunohistochemical stainings
for a-SMA from the same kidneys, in which big vessels were
always excluded.16,18

Statistical Analyses
To measure the strength of the (linear) correlation between
immunohistochemical fibrosis quantifications and network-
based interstitial area estimations, we employed the Pearson
correlation coefficient and the Spearman correlation coeffi-
cient and computed respective P values on the basis of the
t-distribution. We used t-tests for comparison between
CNN, the vanilla U-Net, and the context-encoder by compar-
ing respective Dice score distributions of each class across all
models, and to compare pairwise class instance sizes from
healthy and all disease models (P,0.05 was considered statis-
tically significant).

RESULTS

Ground Truth
For the training and evaluation of our full CNN, we performed
72,722 annotations of six classes, i.e., renal structures, selected
on the basis of the most commonly performed compartment-
specific quantifications in animal models: tubule, full glomer-
ulus, glomerular tuft, artery (including intima and media but
excluding adventitia), arterial lumen, and vein (including re-
nal pelvis and nontissue slide background). We used kidneys
from murine disease models, different species, and humans
(Figure 1, Supplemental Figure 1, Supplemental Table 3). In-
clusion of renal pelvis and large nontissue areas in the “vein”
instead of our “interstitium” class improved predictions of
such large white structures due to their great local similari-
ties and was an important prerequisite for more precise
quantitative analyses, particularly of the interstitium. We
have not distinguished different tubular segments, particu-
larly due to the difficult distinction of injured tubules in the
disease models. The tubular class did not include tubular
basement membranes, to allow a very specific analysis of
tubular cells. Both cortex and medulla were annotated,
whereas perirenal tissues were not included. We recognized
some obstacles in generating annotations, outlined in detail
in Supplemental Figure 2. All annotations were ultimately
corrected by two experts in nephropathology and structures
that were not feasible to assign to a class on the basis of our
class definitions with sufficient certainty and consensus were
not included in annotations (altogether representing only
very few instances).

Accurate Multiclass Segmentation of Murine Kidney
Sections
Although network training took about 8.5 hours on the
graphics processing unit (GPU) RTX2080Ti and required
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approximately 10 GB of GPU memory, automated segmen-
tation of a whole murine kidney longitudinal cross-section
was performed in,5 minutes on the same GPU. Qualitative
segmentation results of representative WSIs from healthy
and diseased kidneys showed high accuracy for all six classes
(Figure 2, A–C, Supplemental Figure 3, A–C). In a healthy
kidney, an accidental scratch was correctly assigned to the
vein class including nontissue areas (Figure 2A, arrow). In
healthy murine kidneys, our CNN was able to detect almost
95% of all tubular structures with an instance segmentation ac-
curacy of 93.2% (Table 1). Almost all glomeruli were correctly
detected and segmented, although detection and segmentation

accuracieswere lowest for arteries and arterial lumina (Figure 3,
A and A’). Segmentation performances in UUO (Figure 3, B
and B’) and IRI (Figure 3, C and C’) were similar to healthy
kidneys for tubules, glomeruli, and vein classes (all .90%).
Alport mice represented themost complexmodel, with correct
segmentation of 91% of all tubules and 95% of all glomeruli,
including those with severe and global pathologic alterations
such as extracapillary proliferates (cellular crescents) or FSGS
(Figure 3, D and D’). Detection and segmentation results for
arteries and their lumina were the lowest, ranging from 79.1%
(segmentation of artery in IRI) to 88.1% (segmentation of ar-
tery in healthy) and from 73.5% (segmentation of arterial

‘‘Full CNN’’ training
Modified vanilla U-Net

OutputInput

Annotations
72722 expert annotations

Classes
• Tubule
• Full glomerulus
• Glomerular tuft
• Artery
• Arterial lumen
• Vein

Dataset
168 Whole-Slide Images (WSI)

• Healthy mice (41 WSI)
• Murine disease models (75)
  UUO, IRI, Adenine, Alport, NTN (15 each)
• Other species (30)
  Rat (8), Pig (6), Marmoset (8), Bear (8)
• Human (16)
• Held-out sets (6)
  db/db (3), external UUO (3)

Evaluation

670 Test patches
• Healthy mice (160 patches)
• Murine models (60 each)
• Other species (30 each)
• Human (30)
• Held-out sets (30 each)

Use Cases

����Full CNN performance comparison with:

Disease-Specific CNNs Reduced Training DataOther Architectures

• Vanilla U-Net
• Context-Encoder Networks

6 CNNs trained on murine data of:
• Only healthy mice
• Only each disease model separately

Ground truth Neural Network

��Full CNN validation & application

a) Model features b) IHC correlation

13 CNNs trained with reduced amount of data:

• w/o human • w/o other species
• only murine data with stepwise reduced
   data amount (from 100% to 9.1 %)

Figure 1. Overview of experimental design. Our DL model (here: Full CNN) was trained with annotations from healthy and diseased
murine kidneys and with annotations from five different species including humans. A total of 72,722 single instance annotations
comprised six different renal structures: “tubule,” “full glomerulus,” “glomerular tuft,” “artery,” “arterial lumen,” and “vein.” The
model was tested on healthy and diseased murine kidneys, on five different other species, on a held-out murine disease model, and on
an external UUO cohort. We used the automatically segmented kidneys to perform quantitative feature analysis and correlations with
IHC. Further experiments included an ablation study on varying training dataset sizes to analyze its effect on model performance, and
we also compared the full CNN with its variants solely trained on single murine models and with different state-of-the-art segmentation
networks including the vanilla U-Net and context-encoder networks. IHC, immunohistochemistry; w/o, without.
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lumen in IRI) to 81.1% (segmentation of arterial lumen in
Alport), respectively. The CNN was able to correctly detect
and segment disease-specific pathologies, e.g., dilated tubules
in UUO (Figure 3B), atrophic tubules in IRI (Figure 3C), glo-
merular crescents and FSGS in Alport mice and NTN
(Figure 3D, Supplemental Figure 4A, arrows), and tubules
with renal crystals in the adenine model (Supplemental

Figure 4B, arrows). Medullary structures were also accurately
segmented in all models (Supplemental Figure 5, A–F’’). Al-
most every segmented item, e.g., one tubular cross-section, was
recognized as an individual instance despite potentially touch-
ing other class instances and could be therefore further ana-
lyzed separately on instance level (Supplemental Figure 5,
A’’–F’’).

Healthy

IRI

Adenine

1mm

A

B

C

Tubule

Glomerular Tuft

Full Glomerulus

Artery

Arterial Lumen

Vein

Figure 2. Automated segmentation on WSIs of murine kidneys. (A) The CNN generates segmentation predictions on a WSI of a
healthy mouse kidney. All six classes, i.e., tubule, glomerulus, glomerular tuft, artery, arterial lumen, and vein, are precisely segmented.
Even tissue damage in the form of an artificial scratch (arrow) is correctly assigned to the vein class including the background. Similar
segmentation predictions are generated for WSIs of (B) IRI and (C) adenine kidneys.
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A very small fraction of structures were not correctly de-
tected or not precisely segmented (Supplemental Figure 6).
These included glomeruli with a direct connection to the
proximal tubule, in which either a part of the glomerulus
was identified as tubule or tubular cells were marked as part
of the glomerulus (Supplemental Figure 6, A and A’, arrow).
Those examples also included special instances, e.g., fibrin
within crescents (Supplemental Figure 6, B and B’, arrow),
which was missing in the training dataset. We also observed
some incorrectly detected tubules, mostly if severely injured,
present as denuded basement membrane (Supplemental Figure 6,
C and C’ arrow), massively dilated (Supplemental Figure 6, D and
D’, arrowhead), or atrophic (Supplemental Figure 6, D and D’
arrow).

Detection rates were improved in all models by providing
more training data (Supplemental Figure 7). In all models and
almost all classes (except arteries and arterial lumina), approx-
imately 35% of ground truth data were already sufficient to
obtain 90% or higher detection rates. Especially for more
complex structures such as arteries or very small structures
like arterial lumina, detection performance could be substan-
tially improved by integrating more training data, indicating
that further improvement of segmentation accuracy for some
classes is feasible (Supplemental Figure 7). For other classes,
especially tubules, the performance was high and stable even
in the case of only about 9% training data.

We compared our CNN with its variants, which have been
solely trained and tested on single murine models (healthy,
UUO, adenine, Alport, IRI, NTN). In almost all models and
classes, especially arteries and lumina, our full CNN trained
on all domains provided higher segmentation performances
compared with the variants (Supplemental Figure 8, A–F).

We next compared our CNN with its unmodified variant,
the vanilla U-Net, and with a context-encoder, a novel state-
of-the-art segmentation framework which was shown to out-
perform the U-Net.31 Our modified CNN significantly
outperformed the unmodified vanilla U-Net (Supplemental
Table 5) and the context-encoder (Supplemental Table 5) in
the majority of classes and models, including arterial struc-
tures. Thus, our modified architecture was suitable for the
specific task of kidney histology segmentation.

Multiclass Segmentation in External UUO Test Set and
Held-Out db/db Model
We next examined performance of our full CNN on PAS
slides from an external UUO cohort and also in a completely
different disease model, i.e., the db/db mice on a high-fat
diet,20 both not included in the training. Quantitative eval-
uation confirmed very high segmentation accuracies of at
least 95% area coverage with the ground truth for glomeruli,
tufts, and tubules in both experiments (Supplemental
Figure 9, A–D’’, Table 2). As in other models, the segmen-
tation of arteries and their lumina was less accurate (both
approximately 80%). Overall, these results are comparable
to the other models included in training, indicating strong
generalization capabilities of our CNN across different lab-
oratories and models.

Multiclass Segmentation of Murine Kidney Sections
Enables Feature Extraction and Analysis
The CNN-based segmentation made it possible to extract
quantitative histologic features on a large scale. We analyzed
each of the six classes in all disease models (Figure 4, A–F),
overall analyzing 70,311 cortical instances. We compared
healthy kidneys, UUO day 10, adenine day 14, Alport at
8 weeks of age, IRI day 14, and NTN day 10. The glomerular
area significantly increased in all models, particularly in those
with primary glomerular damage, i.e., Alport and NTN. This
expansion of glomeruli reached areas of above 14,000 mm2 in
NTN, compared with 6000 mm2 as the largest measured glo-
merular area in healthy mice. We observed similar findings for
glomerular tufts, except for Alport mice, in which the tuft size
was significantly reduced due to sclerosis (Figure 4B). Specific
analyses of the area of Bowman’s space confirmed its expan-
sion in the two models with known glomerular damage, i.e.,
NTN and Alport. In addition, the Bowman’s space was also
significantly increased in the adenine model but decreased in
the IRI model (Figure 4H). Healthy tubules exhibited two
major groups with peak areas of 900 mm2 and 400 mm2, likely
representing different tubular segments. In all disease models,
tubular area distributions converged to a single peak at about
400–500 mm2, in line with tubular damage and simplification.
Tubular dilation was found in several disease models, and

Table 1. Quantitative segmentation and detection performance of six classes in murine kidneys

Mouse
Models

Detection Segmentation

Full
Glomerulus

Glomerular
Tuft

Tubule Artery
Arterial
Lumen

Vein
Full

Glomerulus
Glomerular

Tuft
Tubule Artery

Arterial
Lumen

Vein

Healthy
mouse

98.7 96.5 94.9 87.4 76.2 93.9 96.5 93.7 93.2 88.1 80.3 94.3

UUO 100 100 91.0 78.2 73.3 100 97.5 95.6 90.9 82.3 75.0 97.6
IRI 95.7 97.7 89.3 73.3 67.6 100 96.0 95.4 90.2 79.1 73.5 97.7
Adenine 100 100 93.0 82.4 80.3 90.3 98.8 97.2 93.0 87.9 80.9 93.5
Alport 92.5 93.4 88.6 73.2 79.2 80.0 94.7 91.4 90.6 80.3 81.1 89.2
NTN 96.2 98 93.5 86.1 74.0 89.2 95.5 94.8 93.2 86.8 78.2 92.8

Segmentation performance was calculated by averaging all instance Dice scores from each instance in all test images denoting the mean detected area coverage
per instance. We employed an average precision metric to measure detection performance.
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prominently increased tubular sizes were detected in NTN
(maximum tubular size: 20,000 mm2), Alport (17,000 mm2),
andUUO (15,000mm2), compared with healthy (11,000mm2)
(Figure 4C).

The maximum cross-sectional area of arteries was not
changed, whereas the arterial lumen was slightly reduced in
disease models compared with healthy kidneys and signifi-
cantly decreased in the IRI model (Figure 4, D and E).

The segmentation also allowed us to analyze changes in
the relative proportions of tissue area coverage of all classes
in all models (Figure 5, A–F). Compared with the intersti-
tial area in healthy kidneys (mean 14%), it increased in all

disease models by two- to three-fold (UUO: 38.6%; ade-
nine: 26.3%; Alport: 28%; IRI: 36.5%; NTN: 23.9%). Con-
versely, the tubular area decreased in all models by
15%–30% (from 78% in healthy to 55.3%–66.3% in dis-
ease). We found no differences in the areas occupied by
arteries or their lumina.

To analyze tubular changes inmore detail, wemeasured the
maximum tubular diameter in cortical tubular cross-sections.
This was defined as the diameter of the largest circle com-
pletely fitting into a segmentation of a single tubular cross-
section (Figure 6, A and A’). In line with tubular size
(Figure 4C), diameter distribution in healthy kidneys showed
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Figure 3. Quantitative segmentation performance in murine kidney disease models. Representative PAS pictures and corresponding
segmentation predictions generated by the CNN for murine (A) healthy, (B) UUO, (C) IRI, and (D) Alport kidneys. Instance segmentation
accuracy is shown by instance Dice scores for each class in all four models (A’–D’). Data are presented in box plots with median,
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two major groups with approximately 15- and 30-mm diam-
eter, likely representing proximal and distal tubules versus
collecting ducts (Figure 6A). In all disease models, the maxi-
mum diameter of tubules was higher than in healthy kidneys
(means of healthy: 49 mm; UUO: 56 mm; adenine: 63 mm;
Alport: 83 mm; IRI: 56 mm; NTN: 67 mm) (Figure 6, B–G).
However, in UUO, IRI, and Alport, the number of small tu-
bules also increased, representing tubular atrophy and being in
line with the results of significantly decreased tubular instance
sizes (Figure 4C). In the adenine model, the number of
medium-sized tubules increased due to intratubular adherent
or obstructing crystals. The NTN model contained the most
tubules with a maximum diameter of 20 mm.

Segmentation-Based Feature Correlates with Standard
Morphometric Analyses
Our interstitium class includes several histologic compart-
ments, namely the true interstitium, capillaries, and adventitia
of arteries. To understand whether this class can still provide
useful quantitative information, we compared the interstitial
area of the cortex with computer-assisted morphometric anal-
yses of the same kidneys of three selected models. We used
immunohistochemical stainings for a-SMA, a widely used
marker for the expansion of interstitial myofibroblasts, which
is highly upregulated in the UUO, IRI, and adenine mod-
els.16,18 Representative segmentation showed that compared
with healthy kidneys (Figure 2), the nonclassified interstitial
areas increased in all renal disease models (Figure 7, A–C).
Interstitial area estimated by our CNN strongly correlated
with the expression of the myofibroblast marker a-SMA in
all models (Figure 7, A’–C’).

Translation of Multiclass Segmentation to Kidneys
from Different Species and Humans
To show the broader applicability of our CNN, we applied it to
kidneys of other species, including rats, pigs, black bears, and
marmosets. With only a few additional training sets per spe-
cies, i.e., 50 annotated patches each, the CNN was able to

detect and segment all classes in the cortex (Figure 8, A–D’’)
and medulla (Supplemental Figure 10, A–D’’) in all species,
overall providing very high detection and segmentation accu-
racies of all classes (Table 2).

Finally, we tested the CNN on normal human renal biopsy
specimens and nephrectomy samples. Our full CNN seg-
mented all classes in both cortex and medulla and was appli-
cable to large tissue specimens from nephrectomies and renal
biopsy specimens (Figure 8, E–F’’, Supplemental Figure 10,
E–F’’). Quantitative validation confirmed high detection seg-
mentation accuracies of all classes. However, as compared
with other species, performance was lower for glomerular
tuft, arteries, and their lumina (Table 2). As a proof of concept,
we additionally provided visual segmentation results in hu-
man biopsy specimens showing acute tubular damage, a fea-
ture that is also common in many animal models, yielding
promising segmentation results (Supplemental Figure 11).

DISCUSSION

We developed a CNN for automated multiclass segmentation
of renal histology of different mammalian species and differ-
ent experimental disease models with broad pathologic
alterations. In comparison, the currently available multiclass
segmentation model was developed on patient samples only
and focused on transplant specimens.10 Compared with the
previous work,10 we also technically extended the segmenta-
tion pipeline by employing suitable task-specific modifica-
tions to network architecture, novel approaches for data
quality and quantity improvement, modern network training
and regularization routines, and network performance quan-
tification on the basis of novel and precise evaluation metrics.
As a proof of concept, we used the segmentation results to
provide quantitative metrics for efficient, comparative, high-
throughput histopathologic analyses.

To standardize the annotation procedure, we first devel-
oped precise class definitions and performed several training

Table 2. Quantitative segmentation and detection performance in kidneys from different species, held-out murine disease
model db/db, and external UUO

Kidney
Type

Detection Segmentation

Full
Glomerulus

Glomerular
Tuft

Tubule Artery
Arterial
Lumen

Vein
Full

Glomerulus
Glomerular

Tuft
Tubule Artery

Arterial
Lumen

Vein

Rat 100 82.1 94.7 85.7 81.0 92.9 99.5 88.9 96.5 91.6 89.5 93.9
Pig 93.8 100 95.6 100 95.2 84.6 96.5 99.0 97.9 96.9 96.3 91.6
Black bear 88.3 85.7 96.8 94.3 89.2 100 87.5 91.5 97.3 91.8 94.3 99.7
Marmoset 100 100 95.1 82.7 73.5 92.9 98.9 95.9 96.8 86.0 86.8 96.2
Human 88.2 72.5 91.8 66.7 68.4 72.7 93.4 76.6 95.2 79.1 77.6 85.1
db/db
mice

93.1 96.3 90.5 60.6 58.3 100 95.9 97.5 94.9 81.0 79.1 99.0

External
UUO

93.6 97.7 94.8 68.2 69.6 87.5 96.6 98.5 97.0 78.2 81.4 93.3

Segmentation performance was calculated by averaging all instance Dice scores from each instance in all test images denoting the mean detected area coverage
per instance. We employed an average precision metric to measure detection performance.
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sessions with all expert annotators. This step was also used in
difficult radiologic segmentation tasks, in which experts un-
derwent a period of training of up to several months, until
they had reached a defined reproducibility ensuring sufficient
quality of manual annotations.32 These definitions can also
guide future training for further model improvement. The an-
notation process is highly time-consuming, which is a major
limiting factor. In order to facilitate the process, we loaded
predictions into QuPath, which served as preannotations and
reduced manual annotation effort by up to 90%. This made it
possible to perform an exceedingly large number of expert-
based annotations (72,722 in total), representing the largest
study to date for histopathologic structure segmentation. We
also applied active learning for patch selection, i.e., we visually

selected patches with the largest prediction errors and correc-
ted them, which further strongly improved the CNN perfor-
mance while reducing the number of required annotations as
described by others.33 Furthermore, QuPath currently repre-
sents the most widely used open-source and freely available
software for digital pathology, enabling broad, vendor-
independent applicability.

We have chosen six different murine models broadly used
in nephrology research. The models provide a wide variety of
distinct causes and histopathologic alterations, i.e., obstruc-
tive nephropathy, IRI, crystal-induced nephropathy, immune-
mediated GN, genetic glomerulopathy, and metabolic
(diabetic) nephropathy. Despite the broad differences in his-
topathology, our CNN was able to segment all structures in all
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Figure 4. Instance sizes of each class. Violin plots show the distribution pattern of cross-sectional instance sizes for each of the six
automatically segmented classes: (A) full glomerulus, (B) glomerular tuft, (C) tubule, (D) artery, (E) arterial lumen, and (F) vein in healthy,
UUO, IRI, adenine, Alport, and NTN kidneys. In addition, we subtracted the glomerular tuft area from each glomerulus (G) to analyze
size distribution of Bowman’s space (H). *P,0.05 versus healthy.
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models with high accuracy. Our results suggest that a single
comprehensive CNN might perform better compared with
specific CNNs trained for each model, and that performance
can be further improved by integrating data from different
species, including humans. This follows from the partial class
similarities across all models and species, effectively yielding
more useful training data and thus contributing to learning
more generalizable class features.

Only one-third of the training data were sufficient to
reach approximately 90% accuracy in all classes, except
for arteries and their lumina. For both latter classes, perfor-
mance improved continuously as training datasets
increased, indicating options for further improvements.
Because of the amount of training data, strong color aug-
mentations, and active learning, our CNN yielded accurate
segmentation of an external UUO dataset and db/db mice, a
model with distinct pathology that the network had never
seen before. Our data also showed that it is possible to
achieve promising segmentation accuracy in different spe-
cies or models with relatively low additional annotation ef-
fort by experts. This might allow rapid adaptation of the
algorithm to samples from various laboratories and trans-
lation to additional models and pathologies. This is an im-
portant prerequisite for high-throughput and reproducible
analyses and will be essential to reduce the workload while at
the same time increasing the quantitative precision in exper-
imental and potentially also clinical histopathology. As a

proof of concept, we applied our model to human biopsy
specimens with acute tubular damage with promising seg-
mentation accuracy. However, further studies will be needed
to develop a model that is capable of efficiently segmenting
the broad spectrum of human renal pathology.

We describe the applicability of implementing basic feature
extraction on top of the segmentation results, providing
compartment-specific quantifications. Using a handcrafted
feature, tubular diameters on an entire slide could be analyzed
within minutes, a task that would be impossible to perform
manually. Such basic analyses can provide valuable quantita-
tive information about healthy renal morphology and novel
insights into experimental disease models and human kidney
diseases, while saving an enormous amount of time. We found
that the mean instance size of glomeruli was increased in all of
our disease models. This was expected for models with pri-
mary glomerular damage and crescent formation, i.e., Alport
and NTN, which both also exhibited larger Bowman’s space,
but was surprising for models with primary tubulointerstitial
damage. Possible explanations are compensatory glomerular
hypertrophy with loss of nephrons and enlargement of Bow-
man’s space due to obstruction of the associated tubule, e.g., in
the adenine model and the IRI model. An exception was the
Alport model, which exhibited significantly smaller glomeru-
lar tuft sizes due to pronounced glomerulosclerosis. For tu-
bules, we found a significant decrease in tubular size in all
disease models but at the same time an increase of the

InterstitiumGlomerular Tuft

Vein

Full Glomerulus

Arterial Lumen

Tubule

Artery

HealthyA

AdenineD

UUOB

AlportE

IRIC

NTNF

Figure 5. Relative area distributions of automatically segmented classes. The relative area distributions in percentages in (A) healthy,
(B) UUO, (C) IRI, (D) adenine, (E) Alport, and (F) NTN kidneys additionally give information on the proportion of remaining nonclassified
tubulointerstitial area (shown in black).
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maximum tubular instances in UUO, Alport, and NTN.
These data provide quantitative evidence for tubular injury
and atrophy in all models and model-specific cystic tubular
dilation, whichwas confirmed by the direct analysis of tubular
dilation. Overall, these large-scale, precise quantitative data
provide novel read-outs for interventional studies and poten-
tially also lead to reduced numbers of animals required for
research.

Our study has several limitations. First, in our current
CNN, the nonsegmented area comprises a collection of var-
ious histologic structures, including peritubular capillar-
ies, interstitium, arterial adventitia, tubular basement

membranes, and all other nonrecognized structures. Al-
though we found a high correlation with the expression of
the fibrosis marker a-SMA, our “interstitial area” does not
specifically reflect fibroblasts or fibrosis. Further annota-
tions and training of the specific subclasses, e.g., capillaries,
immune cells, adventitia, and tubular basement mem-
branes, will enable us to refine the segmentation. Second,
we have not differentiated between the various tubular seg-
ments. Although automated differentiation between tubu-
lar segments would allow a more comprehensive study of
tubular injury, we recognized that manual annotations of
tubular segments on PAS stainings were not possible in

N=4650

T
ub

ul
ar

 d
ia

m
et

er
 [μ

m
]

70

60

50

40

30

20

10

0

C UUO

N=5174

T
ub

ul
ar

 d
ia

m
et

er
 [μ

m
]

70

60

50

40

30

20

10

0

F Alport

T
ub

ul
ar

 d
ia

m
et

er
 [μ

m
]

N=5926

70

60

50

40

30

20

10

0

B
Healthy

N=4689

T
ub

ul
ar

 d
ia

m
et

er
 [μ

m
]

70

60

50

40

30

20

10

0

E
Adenine

N=5072

T
ub

ul
ar

 d
ia

m
et

er
 [μ

m
]

70

60

50

40

30

20

10

0

D IRI

N=4153

T
ub

ul
ar

 d
ia

m
et

er
 [μ

m
]

70

60

50

40

30

20

10

0

G NTN

F
ea

tu
re

 V
is

ua
liz

at
io

n

HealthyA

dmax

dmax F
ea

tu
re

 V
is

ua
liz

at
io

n

UUOA’

dmax

dmax

Figure 6. Quantitative analysis of tubular dilation. An exemplary illustration of automated analysis of tubular dilation in PAS stainings of
(A) healthy and (A’) UUO mouse kidneys (top). The maximum tubular diameter is defined as the diameter of the maximum-sized circle
that fits into a tubule segmentation. Violin plots show the distribution of the analyzed tubular diameter within each model, i.e., for (B)
healthy, (C) UUO, (D) IRI, (E) adenine, (F) Alport mice, and (G) NTN. dmax, maximum diameter; N, number of analyzed tubule instances.
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some disease models with reasonable certainty. An auto-
mated differentiation between cortex and medulla could
be the first step toward this direction. Third, our study is
descriptive and does not allow to draw mechanistic impli-
cations. Fourth, human renal diseases show a multitude of
different histopathologic alterations, some of which, e.g.,
membranous or membranoproliferative glomerular
changes, are not well reflected in our animal models. Fur-
ther studies, expert annotations, consensus, and technical
improvements will be required for a holistic segmentation

model that comprehensively covers all (human) renal dis-
eases. Finally, although our network showed promising re-
sults on external, held-out data from a different laboratory,
multicenter studies will be required to assess the full gen-
eralization capability of the network.

In conclusion, our DL algorithm for segmentation of
kidney histology for multiple murine disease models and
species provides a first step toward fully automated high-
throughput quantitative computational experimental
nephropathology.
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Figure 7. Correlation between segmentation and standard computer-assisted morphometric analyses. (A) Representative picture of
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Figure 8. Automated segmentation of kidneys from various species. Representative pictures illustrate the segmentation quality of the
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66 JASN JASN 32: 52–68, 2021

BASIC RESEARCH www.jasn.org



DISCLOSURES

P. Bankhead reports other from Philips Digital Pathology Solutions, outside
the submitted work; and is the primary inventor andmaintainer of theQuPath
open source software platform. J. Floege reports other from Amgen, Bayer,
Calliditas, Fresenius, Omeros, Retrophin, and Vifor, outside the submitted
work. R. Kramann reports grants from Chugai, outside the submitted work.
M. Lehrke reports consultancy agreements with Amgen, Bayer, Boehringer
Ingelheim, Lilly, MSD, Novartis, and Novo Nordisk; research funding from
Boehringer Ingelheim, MSD, and Novo Nordisk; honoraria from Amgen,
Bayer, Boehringer Ingelheim, Lilly, MSD, Novartis, and Novo Nordisk; and
being a scientific advisor to or membership with Amgen, Bayer, Boehringer
Ingelheim, Lilly, MSD, Novartis, and Novo Nordisk. All remaining authors
have nothing to disclose.

FUNDING

This study was funded by German Research Foundation (Deutsche
Forschungsgemeinschaft [DFG]; grants SFB/TRR57, SFB/TRR219, BO3755/
3-1, and BO3755/6-1), the German Federal Ministry of Education and Re-
search (Bundesministerium für Bildung und Forschung [BMBF]: STOP-
FSGS-01GM1901A), the German Federal Ministry of Economic Affairs and
Energy (Bundesministerium für Wirtschaft und Energie [BMWi]: EMPAIA
project), and the RWTHAachen Exploratory Research Space (ERS Seed Fund:
OPSF585).

ACKNOWLEDGMENTS

The support for manual annotations from Felicitas Weiß, Timo Horstmann,
and the whole LaBooratory is gratefully acknowledged.
Mr. Nassim Bouteldja, Dr. Barbara M. Klinkhammer, Dr. Roman D. Bülow,

Prof. Dorit Merhof, and Prof. Peter Boor planned and oversaw the study. Mr.
Nassim Bouteldja, Dr. Barbara M. Klinkhammer, and Dr. Roman D. Bülow
planned and conducted experiments. Mr. Nassim Bouteldja, Dr. Barbara M.
Klinkhammer, Dr. Roman D. Bülow, Mr. Patrick Droste, Mr. SimonW. Otten,
and Dr. Saskia Freifrau von Stillfried performed annotations. Dr. Barbara M.
Klinkhammer and Dr. Roman D. Bülow corrected annotations. Mr. Nassim
Bouteldja performed statistical analyses. Ms. Susan M. Sheehan, Dr. Ron
Korstanje, Dr. Julia Moellmann, Prof. Michael Lehrke, Ms. Sylvia Menzel, Dr.
MatthiasMietsch, Dr. Charis Drummer, Prof. Rafael Kramann, and Prof. Peter
Boor provided samples. Mr. Nassim Bouteldja, Dr. Barbara M. Klinkhammer,
and Dr. Roman D. Bülow wrote the first draft of the manuscript and arranged
the figures. Prof. Jürgen Floege, Prof. Peter Boor, and Prof. Dorit Merhof
critically reviewed the manuscript and figures. All authors read and approved
the final version of the article.

SUPPLEMENTAL MATERIAL

This article contains the following supplemental material online at http://
jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/
DCSupplemental.
Supplemental Table 1. Glossary of technical terms.
Supplemental Table 2. Criteria for definition of classes.
Supplemental Table 3. Quantitative information on ground truth data.
Supplemental Table 4. Architecture of our full CNN.
Supplemental Table 5. Performance comparison of our model, its unmod-

ified variant vanilla U-Net, and state-of-the-art context-encoder.
Supplemental Figure 1. Annotation procedure.

Supplemental Figure 2. Challenging morphology for manual and auto-
mated annotations.

Supplemental Figure 3. Segmentation on whole-slide images of UUO, Al-
port, and NTN kidneys.

Supplemental Figure 4. Quantitative segmentation performance in murine
NTN and adenine kidneys.

Supplemental Figure 5. Automated segmentation in the medulla of murine
kidney sections.

Supplemental Figure 6. Examples of missclassifications.
Supplemental Figure 7. Relation between amount of training data and de-

tection performance.
Supplemental Figure 8. Comparison between our full CNN and its variants

independently trained on single models.
Supplemental Figure 9. Segmentation of nontrained and external murine

kidney slides.
Supplemental Figure 10. Automated segmentation of renal medulla in dif-

ferent species.
Supplemental Figure 11. Automated segmentation of human biopsy spec-

imens presenting with acute tubular damage.

REFERENCES

1. Robboy SJ, Weintraub S, Horvath AE, Jensen BW, Alexander CB, Fody
EP, et al.: Pathologist workforce in the United States: I. Development of
a predictive model to examine factors influencing supply. Arch Pathol
Lab Med 137: 1723–1732, 2013

2. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521: 436–444,
2015

3. Boor P: Artificial intelligence in nephropathology.Nat Rev Nephrol 16:
4–6, 2020

4. Sirinukunwattana K, AhmedRaza SE, Yee-Wah Tsang , SneadDRJ, Cree
IA, Rajpoot NM: Locality sensitive deep learning for detection and
classification of nuclei in routine colon cancer histology images. IEEE
Trans Med Imaging 35: 1196–1206, 2016

5. Xu Y, Jia Z, Wang LB, Ai Y, Zhang F, Lai M, et al.: Large scale tissue
histopathology image classification, segmentation, and visualization
via deep convolutional activation features. BMC Bioinformatics 18:
281, 2017

6. Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, et al.:
Deep learning can predict microsatellite instability directly from his-
tology in gastrointestinal cancer. Nat Med 25: 1054–1056, 2019

7. Gadermayr M, Eschweiler D, Jeevanesan A, Klinkhammer BM, Boor P,
Merhof D: Segmenting renal whole slide images virtually without
training data. Comput Biol Med 90: 88–97, 2017

8. Gadermayr M, Gupta L, Appel V, Boor P, Klinkhammer BM, Merhof D:
Generative adversarial networks for facilitating stain-independent su-
pervised and unsupervised segmentation: A study on kidney histology.
IEEE Trans Med Imaging 38: 2293–2302, 2019

9. Gupta L, Klinkhammer BM, Boor P, Merhof D, Gadermayr M: Stain in-
dependent segmentation of whole slide images: A case study in renal
histology. Proceedings from the 2018 IEEE 15th International Sympo-
sium on Biomedical Imaging, Washington, DC, April 4–7, 2018, pp
1360–1364

10. Sheehan SM, Korstanje R: Automatic glomerular identification and
quantification of histological phenotypes using image analysis and
machine learning. Am J Physiol Renal Physiol 315: F1644–F1651, 2018

11. Hermsen M, de Bel T, den Boer M, Steenbergen EJ, Kers J, Florquin S,
et al.: Deep learning-based histopathologic assessment of kidney tis-
sue. J Am Soc Nephrol 30: 1968–1979, 2019

12. Ginley B, Lutnick B, Jen KY, Fogo AB, Jain S, Rosenberg A, et al.:
Computational segmentation and classification of diabetic glomer-
ulosclerosis. J Am Soc Nephrol 30: 1953–1967, 2019

13. Bueno G, Fernandez-Carrobles MM, Gonzalez-Lopez L, Deniz O:
Glomerulosclerosis identification in whole slide images using

JASN 32: 52–68, 2021 Deep Learning in Experimental Nephropathology 67

www.jasn.org BASIC RESEARCH

http://doi.org/10.13039/501100001659
http://doi.org/10.13039/501100001659
http://doi.org/10.13039/501100002347
http://doi.org/10.13039/501100006360
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020050597/-/DCSupplemental


semantic segmentation. Comput Methods Programs Biomed 184:
105273, 2020

14. Bueno G, Gonzalez-Lopez L, Garcia-Rojo M, Laurinavicius A, Deniz O:
Data for glomeruli characterization in histopathological images. Data
Brief 29: 105314, 2020

15. Kannan S, Morgan LA, Liang B, Cheung MG, Lin CQ, Mun D, et al.:
Segmentation of glomeruli within Trichrome images using deep
learning. Kidney Int Rep 4: 955–962, 2019
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Supplementary Table 1. Glossary of technical terms. 

Term Description 

Ablation study Experiment with consecutively reduced input data. 

In more detail: A procedure where certain configurations of neural 

network architecture or training including modifications to data sets are 

changed to gain a better understanding of their importance and impact 

(mainly on overall performance). 

Border class ->Class comprising borders of structures. 

Example: The tubule’s border marked in 

red is assigned to the border class. 

In more detail: Artificial class representing 

the border of specific structures. In our 

application, we make use of a border 

class, that especially represents the 

tubular basement membrane, to separate 

tubular (as well as glomerular or arterial) instances from each other, 

allowing for instance-level analysis. 

Capacity Amount of ->parameters in a neural network. 

In more detail: A neural network consists of many trainable 

parameters. Its number represents the network’s capacity. It is also 

associated with its complexity, i.e. the degree of complexity of patterns 

the model is able to learn. Note that a neural network represents a 

mathematical function including input variables and parameters. Thus, 

the parameters are here defined in a mathematical way. 

Channel numbers Number of ->feature maps.  

Example: The channel number of the 

first, orange ->convolutional layer is 32. 

In more detail: In convolutional neural 

networks, input data is subsequently 

propagated through ->convolutional 

layers each producing multiple output 

->feature maps. Their number re-

presents the channel number of the layer. 

Class A group of structures. 

Example: All tubular structures belong to the “tubule”-class. 

Context-awareness Ability of a method to incorporate sufficient 

spatial neighborhood information for the 

assessment / prediction of a pixel.  

In more detail: The more spatial context 

is considered for pixel prediction, the 

more context-aware is a technique. In 

our case, our network provides sufficient 

spatial context even for pixel prediction 

at patch border. 

Convolutional layer Network layer performing convolutions to its input.  

Example: All green blocks represent such layers. 

In more detail: Such layers represent substantial 

components in CNNs. Convolutions are 

performed on input data resulting in multiple              

->feature maps. Convolutions are mainly specified based on the 

following ->parameters:  

32 

Pixel of interest 

Context/neighborhood 



->kernel size, ->stride and ->padding.  

As exemplary shown on the right, a 

convolution (with 3x3 kernel size) slides 

over the image and outputs a single 

value for each 3x3 region. 

Cross-entropy loss Information-theoretical measure of the dissimilarity between network 

output and ->ground truth. 

In more detail: A commonly used ->loss function when training 

segmentation or classification networks. The Cross-entropy loss (CE) 

is based on information theory and measures the difference between 

a target probability distribution (represented by ground truth 

annotations) and an estimated one (represented by model 

predictions). Its values range between 0 and 1. The smaller the loss, 

the higher the similarity. Thus, a perfect overlap results in a value of 

zero. 

Dice loss / Dice score The Dice score measures the similarity between network prediction 

and ->ground truth based on their spatial overlap. 

In more detail: The Dice score is a metric to quantify the similarity 

between two binary segmentations 𝑋 and 𝑌 as follows: 𝐷𝑆𝐶 =  
2 |𝑋∩𝑌|

|𝑋|+|𝑌|
. 

In other words, it roughly quantifies the amount of spatial overlap 

between both segmentations. For multi-label evaluation, binary 

representations of ground truth and prediction are compared for each 

class. Besides, the Dice loss is represented by the Dice score in the 

following way: 𝐷𝑆𝐶𝑙𝑜𝑠𝑠 = 1 − 𝐷𝑆𝐶, since neural networks require               

->loss functions instead of score functions.  

Ensembling ->Regularization technique to improve performance. 

In more detail: Instead of one single learning algorithm, multiple neural 

networks are differently trained, and thus form different predictors to 

reduce prediction variance. Final results are performed by merging the 

predictions of all networks. 

Epoch An epoch ends when all training samples have been fed through the 

network once. 

Feature An individual, measurable property, e.g. glomerular size is a feature of 

the glomerulus. 

Feature map Spatially arranged features that are generated by applying filters to the 

convolutional layer input, i.e. the input image or feature map outputs 

from the prior layer. 

Example: A convolutional filter has been applied to the left image 

resulting in a two-dimensional feature map highlighting its edges. 

  

Ground Truth Target data we expect the network to predict. We annotate and classify 

structures according to our renal ->class definitions in Supp. Table 2 

and consider these annotations and classifications to correspond to 

reality, thus representing the ground truth. 

Example: Ground truth image of the left image is shown right. 



  
Hyperparameter Special ->parameters to control e.g. the learning process or 

architecture of the deep learning model. They are determined by the 

experimentator before as well as dynamically during training. 

Examples are the amount of ->epochs or the ->kernel size. 

Image segmentation Decomposition of an image into structures of interest. 

Example: Segmentation of a tubule. 

 

Instance A single structure of a class. Example: All 

tubular instances are differently colored 

(Image from Supp. Fig. 5, third column). 

 

Instance normalization ->Regularization technique applied in neural networks.  

In more detail: In contrast to the widely used batch normalization, 

instance normalization normalizes each ->feature map independently 

providing zero mean and unit variance. 

Kernel size  Specifies the size of a convolutional filter that is slid over the image. 

Loss function A mathematical function measuring the dissimilarity between network 

prediction and ->ground truth. 

In more detail: To train a neural network, a (differentiable) 

mathematical loss function representing a metric to measure the 

dissimilarity between prediction and ground-truth is required. During 

training, the network is consecutively optimized (with respect to the 

loss function) to lower the loss and thus to improve the similarity 

between prediction and ground-truth. 

Negative slope ->Hyperparameter in the mathematical LeakyReLU function. 

In more detail: The LeakyReLU function is defined as follows: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥,    𝑥 ≥ 0                                           
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 ∗ 𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus, the 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒-hyperparameter specifies the slope of the 

LeakyReLU function for negative inputs, i.e. 𝑥 < 0. Most commonly, 

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 = 0.01 is chosen by the experimentator. 

Padding An operation within convolutional layers to artificially enlarge the input 

data.  

In more detail: Specifies how much the input data is spatially padded 

around it. Padding an image with zeros exemplary means that zero 

values are added around it. Padding is used to counteract shrinkage 

of the input data caused by convolution. 

 



Example: 

         without padding                        with padding 
 

 

 

 

 

 

Parameter Components of a (deep learning) system that fully define and 

characterize the system.  

In more detail: During network training, its trainable parameters are 

optimized. After training, all network parameters (trainable and non-

trainable) are held constant, and the model is then used for prediction 

computation. 

Receptive field The prediction of a single output pixel only depends on a certain region 

of the input image. This region represents its receptive field. The size 

depends on the architecture of the network. 

Reduce-On-Plateau Technique to schedule the learning rate. 

In more detail: The learning rate represents an important                                

->hyperparameter in neural networks that controls the speed of 

learning. This learning rate scheduler reduces the learning rate by a 

specific factor each time when the validation error has not decreased 

for a certain number of epochs. 

Regularization Regularization techniques are employed to improve network’s 

generalization, i.e. reducing the error on test data. At the expense of 

increased training error, such techniques impose particularly designed 

constraints to the neural network preventing them to solely memorize 

the training data without having learned the underlying patterns. 

ReLU Stands for rectified linear unit and represents a mathematical function 

defined as follows: 𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥,    𝑥 ≥ 0         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  

Robustness Describes the extent of input variability (e.g. in tissue morphology, 

staining, slide thickness, laboratory) an algorithm can cope with. 

Generally, it is measured by performance evaluation on those 

variabilities (usually held-out as in the current study). 

Stride An operation within convolutional layers to specify how many pixels 

the convolutional filter (or: ->kernel) is moved when slid over the 

image. 

Example: 

stride of “1” (shift of 1 pixel)             stride of “2” (shift of 2 pixels). 

 

 

 

 

 

Test-time augmentation ->Regularization technique to improve performance. 

In more detail: Regularization technique that forwards flipped versions 

of the input through the network and averages their respectively back-

flipped predictions to yield the final prediction. In contrast to                          

->ensembling, just a single network/predictor is used to perform 

multiple estimations. 

 

 



                 
 

                                
 

                                
 

                                
 

Transposed convolutions The conventional convolution provides a many-to-one relationship 

between input and output, since many input pixels are connected to a 

single value in the output. In 

contrast, transposed convolutions 

make use of a reversed pixel 

connectivity (in backward 

direction) providing a one-to-many 

relationship. Thus, it is designed 

for image ->upsampling. 

Upsampling Expansion or increase of the spatial resolution of an image. 

In more detail: Upsampling can be exemplarily performed by pixel 

interpolation meaning that new pixel values can be estimated between 

pixels by using their neighborhood, e.g. by averaging neighboring 

pixels values (ultimately yielding a denser image grid). The picture in  

->transposed convolutions exemplarily shows an upsampling of an 

artificial image. 
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Supplementary Table 2. Criteria for definition of classes. 

Class  Criteria 

Full glomerulus 
- annotation along Bowman’s capsule 

- if cross section showed urinary (or vascular) pole, glomerulus was 

encircled in round/oval shape 

Glomerular tuft 

- subclass of the full glomerulus class 

- annotation of glomerular tuft only (including podocytes)  

- for glomerular lesions: extracapillary proliferates (= crescents), 

parietal epithelial cells which migrated onto the tuft or tip lesions 

were not included 

Tubule 
- annotation along, but excluding, the basement membrane 

Artery - annotation of all arteries, including all arterial branches to arterioles 

- at least one visible vascular smooth muscle cell layer required  

Arterial lumen - subclass of the artery class 

- annotation of lumen only, excluding also the endothelium  

Vein  

- annotation of large “white” areas  

- only the lumen, i.e. the “white” area was annotated 

- for veins the definition of larger vessels next to arteries with a 

minimal diameter of 30µm  

- class includes non-tissue background and renal pelvis 

 

  



Supplementary Table 3. Quantitative information on ground truth data. 

Model / 

Species 

Number of 

annotated 

patches / WSI 

Train / val / test 

split of annotated 

patches  

Train / val / test 

split of partially 

annotated WSI 

Total number of instance annotations 

Σ full 

glom. 

glom. 

tuft 
tubule artery 

arterial 

lumen 
vein 

Healthy 

mouse 

820 / 41 600 / 60 / 160 30 / 3 / 8 835 804 18536 1107 1416 609 23307 

UUO 300 / 15 220 / 20 / 60 11 / 1 / 3 225 221 6795 301 314 177 8033 

IRI 300 / 15 220 / 20 / 60 11 / 1 / 3 242 242 7555 354 397 102 8892 

Adenine 300 / 15 220 / 20 / 60 11 / 1 / 3 257 256 5995 342 384 111 7345 

Alport 300 / 15 220 / 20 / 60 11 / 1 / 3 413 368 7137 361 383 83 8745 

NTN 300 / 15 220 / 20 / 60 11 / 1 / 3 247 237 5500 275 295 139 6693 

db/db 30 / 3 0 / 0 / 30 0 / 0 / 3 27 27 652 27 22 10 765 

Ext. UUO 30 / 3 0 / 0 / 30 0 / 0 / 3 46 43 879 42 27 8 1045 

Human 230 / 12 200 / 0 / 30 10 / 0 / 2 123 148 1958 125 145 40 2539 

Rat 80 / 8 50 / 0 / 30  5 / 0 / 3 56 59 1372 66 74 27 1654 

Pig 80 / 6 50 / 0 / 30 5 / 0 / 1 50 49 900 57 67 23 1146 

Marmoset 80 / 8 50 / 0 / 30 5 / 0 / 3 39 39 774 62 70 28 1012 

Black bear 80 / 8 50 / 0 / 30 5 / 0 / 3 51 51 1240 85 91 28 1546 

Σ 2930 / 164 2100 / 160 / 670 115 / 8 / 41 2611 2544 59293 3204 3685 1385 72722 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction, val = validation 

 

 

 

 

 

 

 

 



Supplementary Table 4. Architecture of our CNN. 

Network Architecture Output size 

Input image layer 640 x 640 x 3 

Conv2d(i: 3, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

MaxPool2d(k: 2, s: 2, p: 0) 320 x 320 x 32 

Conv2d(i: 32, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

MaxPool2d(k: 2, s: 2, p: 0) 160 x 160 x 64 

Conv2d(i: 64, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

MaxPool2d(k: 2, s: 2, p: 0) 80 x 80 x 128 

Conv2d(i: 128, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

MaxPool2d(k: 2, s: 2, p: 0) 40 x 40 x 256 

Conv2d(i: 256, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

MaxPool2d(k: 2, s: 2, p: 0) 20 x 20 x 512 

Conv2d(i: 512, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

Conv2d(i: 1024, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

ConvTranspose2d(i: 1024, o: 1024, k: 2, s: 2) 40 x 40 x 1024 

Conv2d(i: 1536, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 38 x 38 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 36 x 36 x 512 

ConvTranspose2d(i: 512, o: 512, k: 2, s: 2) 72 x 72 x 512 

Conv2d(i: 768, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 70 x 70 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 68 x 68 x 256 

ConvTranspose2d(i: 256, o: 256, k: 2, s: 2) 136 x 136 x 256 

Conv2d(i: 384, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 134 x 134 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 132 x 132 x 128 

ConvTranspose2d(i: 128, o: 128, k: 2, s: 2) 264 x 264 x 128 

Conv2d(i: 192, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 262 x 262 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 260 x 260 x 64 

ConvTranspose2d(i: 64, o: 64, k: 2, s: 2) 520 x 520 x 64 

Conv2d(i: 96, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 518 x 518 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 516 x 516 x 32 

Conv2d(i: 32, o: 8, k: 1, s: 1, p: 0)  516 x 516 x 8 

Conv2d = two-dimensional convolutional layer, IN = instance normalization, i = #input layers, o = 

#output layers, k = kernel size, s = stride, p = padding, sl = negative slope 

  



Supplementary Table 5. Performance comparison of our model, its unmodified 

variant vanilla u-net, and state-of-the-art context-encoder. 

Shown are mean object-level dice scores for our model / the unmodified variant vanilla u-net / state-of-

the-art context-encoder. The highest Score is marked in bold. * p < 0.05 vs. vanilla u-net and ° p < 

0.05 vs. context-encoder. 

Mouse 

Model 

Segmentation performance of our model / vanilla u-net / context-encoder 

full glomerulus glomerular tuft tubule artery arterial lumen vein 

Healthy 96.5 / 95.6 / 96.2 93.8 / 93.8 / 93.5   93.3 / 92.9 / 93.0 88.1 / 87.4 / 87.8 80.3 / 80.0 / 80.6 94.3 / 88.9 / 92.0 

UUO 97.5 / 95.2 / 95.3 95.6 / 93.9 / 94.5 90.8 / 90.8 / 91.3 82.3 / 81.2 / 82.6 75.0 / 72.9 / 73.7 97.6 / 95.4 / 94.6 

IRI 96.0 / 97.7 / 95.7 95.4 / 94.7 / 94.4 90.2 / 89.1 / 89.9 79.1 / 74.7 / 74.2 73.5 / 62.3 / 61.7 97.7 / 86.7 / 87.0 

Adenine 98.8 / 94.1 / 98.5 97.2 / 94.1 / 97.1 93.0 / 92.0 / 92.8 87.9 / 83.3 / 83.2 80.9 / 72.7 / 76.9 93.6 / 87.6 / 96.7 

Alport 94.7 / 95.5 / 96.3 91.3 / 86.4 / 87.6 90.6 / 89.7 / 89.3 80.3 / 74.2 / 72.0 81.1 / 69.9 / 65.5 89.2 / 83.2 / 81.7 

NTN 95.5 / 91.5 / 96.3 94.8 / 93.9 / 93.9 93.2 / 92.5 / 92.9 86.8 / 82.7 / 83.9 78.2 / 73.9 / 79.1 92.8 / 91.8 / 95.4 

∅ 96.4* / 94.0 / 96.3 94.2* / 92.6 / 93.0 92.0* / 91.4 / 91.7 85.3*° / 82.8 / 82.9 79.1*° / 75.9 / 76.1 94.3* / 90.4 / 92.7 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction 

 



 
Supp. Fig. 1. Annotation procedure. 

A representative picture of a PAS stained mouse kidney section (A) and an overlay 

with manual annotations for six classes (A’). The annotation of the “glomerular tuft” 

(blue (B)) included the capillary tuft, the mesangium and podocytes. A “full glomerulus” 

(green (C)) was annotated along bowman’s capsule and included the tuft, bowman’s 



space and parietal epithelial cells. The glomerular tuft was always a subclass of the 

full glomerulus. A full glomerulus always had a round or oval shape, this determined 

the separation from the proximal tubule (arrow). Tubules (red (D) were annotated along 

(but excluding) the tubular basement membrane, tangentially cut tubules without 

cytoplasm were excluded. The “arterial lumen” (yellow (D)) was always a subclass of 

the “artery” class (magenta (F)). Veins, background and renal pelvis were big “white” 

areas without tissue (cyan (G)). From the first manual annotations, we predicted initial 

pre-annotations for 20 patches per WSI and loaded them into Qupath for manual 

corrections facilitating annotation effort (H). 

 

 

 

  



 
Supp. Fig. 2. Challenging morphology for manual and automated annotations. 

(A-A’’) show examples of glomeruli in PAS stained murine kidney sections. On a 

sectional plane close to the vascular or urinary pole it was difficult to discriminate 

between glomerular tuft and arterioles (arrow, A), or the glomerular tuft and parietal 

epithelial cells or tubular epithelial cells (arrows, A’,A’’). Sometimes the tubular 

basement membrane appeared discontinuous (arrows in B, B’). The distinction of 

medial layers of arteries was harder when vessels run side by side (arrow, C). (D-D’’) 

show medulla of murine kidneys with the network of capillaries and the tubular system, 

which in some cases was not easy to discriminate. 

 

 

  



 
Supp. Fig. 3. Segmentation of WSI of UUO, Alport and NTN kidneys. 

CNN generated segmentation predictions on a whole slide image (WSI) of an UUO 

(A), Alport (B) and NTN (C) mouse kidney. All six classes, were precisely segmented. 

NTN = nephrotoxic nephropathy, UUO = unilateral ureteral obstruction.  



 
Supp. Fig. 4. Quantitative segmentation performance in murine NTN and adenine 

kidneys. 

Representative PAS pictures and the corresponding segmentation prediction 

generated by our CNN for a murine NTN (A) and adenine kidney (B). Instance 

segmentation accuracy is shown by dice scores for each class in both models (A’-B’). 

Data are presented in Box plots with median, quartiles and whiskers. NTN = 

nephrotoxic nephropathy. 

 

 

  



 
Supp. Fig. 5. Automated segmentation in the medulla of murine kidney sections. 

Representative PAS pictures and corresponding overlays with segmentation 

predictions showing either the different classes or every single instances for the 

medulla of murine healthy (A-A’’), UUO (B-B’’), IRI (C-C’’), adenine (D-D’’), Alport (E-

E’’) and NTN (F-F’’) kidneys. 

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 

ureteral obstruction.  



 
Supp. Fig. 6. Examples of missclassifications.  

PAS photographs and prediction overlays show an incorrect separation of a “full 

glomerulus” and the connected proximal “tubule” (arrow in A, A’), a glomerular tuft that 

was inaccurately segmented with projections into the crescent (arrow in B, B’) and an 

incompletely segmented tubule due to extensive necrosis (arrow in C,C’). Another 

example shows a strongly dilated tubule which is was incorrectly classified as full 

glomerulus and arterial lumen (arrowheads in D,D’) and missing segmentations of 

atrophic tubules (arrows in D,D’).  



 
 

Supp. Fig. 7. Relation between amount of training data and detection 

performance.  

The detection performance for all six classes in healthy (A), UUO (B), IRI (C), adenine 

(D), Alport (E) and NTN (F) was plotted against the amount of total data used for CNN 

training. 

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 

ureteral obstruction. 
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Supp. Fig. 8. Comparison between our full CNN and its variants independently 

trained on single models. 

(A) Segmentation performance shown as instance dice scores for all six classes was 

compared on our healthy kidney test data between our full CNN trained on all training 

data (blue) and its variant that has been solely trained with data from healthy kidneys 

(yellow). (B) The same comparison is shown for the UUO, in which the network variant 

was exclusively trained with annotations from UUO kidneys. Analogously, analyses are 

performed for IRI (C), adenine (D), Alport (E) and NTN (F). 

Data are presented in Box plots with median, quartiles and whiskers. IRI = ischemia-

reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction. 

 

  



 
Supp. Fig. 9. Segmentation of non-trained and external murine kidney slides. 

Representative pictures show segmentation results for cortex (A-A’’) and medulla (B-

B’’) for kidneys from db/db mice fed with high fat western diet. Predictions (A’, B’) depict 

different classes, while A’’ and B’’ display segmentation on single instance level. The 

CNN also accurately segments cortex (C-C’’) and medulla (D-D’’) from PAS slides of 

an external UUO cohort. Predictions (C’, D’) depict different classes, while C’’ and D’’ 

display segmentation on single instance level. 

UUO = unilateral ureteral obstruction. 

 

 



 
Supp. Fig. 10. Automated segmentation of renal medulla in different species. 

Representative PAS pictures and the corresponding overlays for segmentation 

predictions showing either the different classes or every single instance for the medulla 

of rat (A-A’’), pig (B-B’’), black bear (C-C’’), marmoset (D-D’’) and human (E-F’’) 

kidneys. Segmentation is accurate on human nephrectomy (E-E’’) as well as on biopsy 

specimens (F-F’’). 



 

Supp. Fig. 11. Automated segmentation of human biopsies presenting with acute 

tubular damage. Representative PAS-pictures and the respective segmentation 

prediction overlays from cortex (A-B’’) and medulla (C-D’’) of human biopsies with 

acute tubular damage.  


